

				Printed Page: 1 of 1							
				Sub	ject	Coc	le: F	KEC.	053		
Roll No:											

BTECH (SEM V) THEORY EXAMINATION 2023-24 VLSI TECHNOLOGY

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

1.	SECTION A Attempt all questions in brief	2 x 10 =	- 20				
Qno.	Attempt all questions in brief. Question						
a.	Mention the advantages of ICs.	Marks 2	CO 1				
b.	Define polishing.	2	1				
c.	What is auto doping in growth process?	2	2				
d.	What is plasma oxidation?	2	2				
e.	Explain photo mask.	2	3				
f.	What are PR materials?	2	3				
	Write the types of diffusion.	2	4				
g.	Define ion-implantation	2					
h.	*		4				
i.	Enlist different types of IC packages.	2	5				
j.	Write all packaging design considerations.	2	5				
	SECTION D						
2	SECTION B	10 - 2	20				
2.	Attempt any three of the following: Explain Electronic Grade Silicon with neat diagram	10 x 3 =	1				
a. b.	Discuss Vapor-Phase Epitaxy.	10	2				
	Explain in detail Optical Lithography.	10	3				
c.	Explain fick's law of diffusion.	10	4				
	Discuss Package Types and Packaging Design Considerations.	10	5				
e.	Discuss Lackage Types and Lackaging Design Considerations.	10	3				
	SECTION C						
3.	Attempt any <i>one</i> part of the following:						
a.	Explain CZ process in detail with neat diagram. What is the pull rate in CZ technique?	10 x 1 =	1				
b.	Discuss different shaping operations involved in preparing wafers with	10	1				
	diagram.						
4.	Attempt any one part of the following:	10 x 1	= 10				
a.	Explain the principle of Molecular Beam Epitaxy.	10	2				
b.	What is latch up? How it is avoided in CMOS technology?	10	2				
5.	Attempt any one part of the following:	10 x 1	= 10				
a.	Explain the kinetics of wet watching. How gold is etched?	10	3				
b.	How is the silicon nitride used? Explain its deposition variables.	10	3				
6.	Attempt any one part of the following:	10 x 1	= 10				
a.	Define sheet resistance. Describe a method for its measurement.	10	4				
b.	Discuss gaseous and liquid diffusion system.	10	4				
7.	Attempt any one part of the following:	10 x 1 =					
a.	Explain Metallization and describe the problems associated with this process.	10	5				
b.	What do you mean by Sputtering? Explain Sputtering yield.	10	5				